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a b s t r a c t

When using bone vibrator transducers for clinical measurements, the transfer of energy from the bone
driver depends on the impedance match between the driver and the load (human mastoid or otherwise)
to which the driver will be applied. Current clinical calibration methods are incapable of quantifying this
impedance mismatch, hence they fail to account for inter-subject variations of the energy transferred
from the driver to the load. This study proposes a straightforward method for determining an absolute
field calibration of a Radio Ear B71 bone driver, found by measuring the electrical input impedance of
the transducer loaded by known masses. This absolute calibration is based upon a circuit model of the
driver, describing it with three frequency-dependent parameters. Once these three parameters are
known, measurements of the driver input voltage and current may be used to determine arbitrary
mechanical load impedances (such as the in situ mastoid impedance), and thus the frequency dependence
of the transmitted energy. The results of the proposed calibration method are validated by comparison
with direct mechanical measurements using specialized equipment not available in the clinic, and a
refined bone driver circuit model is proposed to better capture the observed behaviors.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Our purpose in calibrating a mechanical transducer is to
describe the force FðxÞ and particle velocity vðxÞ produced at
the driver’s mechanical output, in terms of the voltage EðxÞ and
current IðxÞ delivered to its electrical input. The standard clinical
approach is to use an artificial mastoid, such as the Brüel and
Kjær Artificial Mastoid Type 4930, to measure the bone driver’s
output force, in response to a known input current (BK4930,
1995). This yields a frequency-dependent transfer function F=I,
which is a function of velocity, or equivalently, the mechanical load
impedance ZLðxÞ. In general, with the driver mounted on a sub-
ject’s mastoid, this transfer function may be used to estimate the
force FðxÞ applied to the mastoid, based on the electrical stimulus
level (ISO 389–3, 1994).

A critical issue with this calibration approach (clinically often
overlooked) is that the transfer of energy from the bone driver de-
pends on the impedance match between the driver and the load
(artificial mastoid, human mastoid, or otherwise) to which the dri-
ver is applied. Specifically, if the impedance (mis)match between
the driver and artificial mastoid is not the same as that between
ll rights reserved.
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the driver and human mastoid, then the artificial mastoid calibra-
tion will not properly predict the force (energy) that is being trans-
ferred from the driver to the human mastoid. Therefore when the
transfer function from the artificial mastoid calibration is used
for measurements of a human mastoid, this implicitly assumes
that the artificial mastoid and human mastoid possess identical
impedance properties — an assumption that is critically under-
mined by the fact that the mastoid driving-point impedance is
significantly subject-dependent (Håkansson et al., 1986; Flottorp
and Solberg, 1976). Measurements utilizing the artificial mastoid
calibration suffer from this significant lack of accuracy due to large
differences between the impedance of the subject’s mastoid and
artificial mastoid. Furthermore, because a subject’s mastoid imped-
ance can also depend on the placement of the bone driver, repeated
measurements of a specific subject may suffer from lack of preci-
sion as the bone driver is repositioned between measurements
(Flottorp and Solberg, 1976).

In order to quantify and account for these effects, it is necessary
to measure the mastoid impedance as seen by the bone driver’s
diaphragm each time it is mounted on a subject’s mastoid.1
1 Much of the discussion in this paper focuses on the specific case of positioning the
bone driver on a subject’s mastoid. However, all statements are applicable to other
driver placements, e.g., the forehead. In fact, the problems with typical driver
calibration techniques only worsen as the actual load impedances deviate further
from the artificial mastoid’s impedance.

http://dx.doi.org/10.1016/j.heares.2010.02.013
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The aim of this research is to develop an absolute clinical calibration
method for the bone driver, the meaning of which is described below
in Section 2.1. Such a calibration facilitates the measurement of the
mastoid driving-point impedance, as seen by the driver, every time it
is used. Knowledge of the in situ mastoid driving-point impedance
then allows the power transferred to the mastoid to be measured
as a function of frequency.
2. Theory

In order to be feasibly implemented in a clinical setting, the
calibration method proposed here must rely only on electrical
measurements (voltages, currents) or a function of known load
impedances. It is of course possible to obtain direct measure-
ments of the mechanical motion of the bone driver diaphragm,
but such measurements are complicated and require specialized
equipment (such as lasers) not to be found in a clinical setting,
due to their cost. For example, Haughton (1982) built a mechan-
ical system for imposing a variable load on a Radio Ear B71 bone
vibrator in order to derive its mechanical impedance and
transduction coefficient. His analysis assumed that the transducer
was reciprocal ðTem ¼ TmeÞ rather than anti-reciprocal ðTem ¼
�TmeÞ, as required for electromagnetic transducers (Beranek,
1988; Hunt, 1954; McMillan, 1946), thus rendering the results
uninterpretable. Cortés (2002) studied the bone driver output
force as a function of the input voltage, again relying on expen-
sive mechanical measurements not accessible in the clinic. Cortés
did not assume reciprocity and found that Tem � �Tme, providing
experimental confirmation of the driver’s anti-reciprocal nature.
The present analysis proposes a calibration approach, easily and
economically applied in the clinic (i.e., no laser or other special
test equipment is required).

2.1. Hunt’s transducer model

As depicted in Fig. 1, Hunt (1954) describes an electromechan-
ical transducer as a two-port linear relation: the signals on the
electrical side are represented by voltage E and current I, and on
the mechanical side by force F and particle velocity v. The electrical
and mechanical variables are related by the following two-port
equation:

EðxÞ
FðxÞ

� �
¼

ZeðxÞ TemðxÞ
TmeðxÞ zmðxÞ

� �
IðxÞ
vðxÞ

� �
: ð1Þ

The transducer has an electrical impedance Ze, a mechanical imped-
ance zm, and two transduction coefficients: Tem represents the elec-
trical transduction due to mechanical energy, and Tme represents
the mechanical transduction due to electric energy. Ze; zm; Tem and
Tme are each functions of frequency x. The phase of Ze and zm must
be limited to �p=2 (Van Valkenburg, 1964). Furthermore, for an
anti-reciprocal transducer such as an electromagnetic bone driver
(McMillan, 1946), the transduction coefficients are equal but of
opposite sign, thus

T � Tme ¼ �Tem: ð2Þ
E vI
Ze

Tme

Tem
F

zm

ZL

Fig. 1. Schematic representation of an electromechanical transducer, loaded by a
mechanical impedance ZL . The transducer is a two-port model composed of the
Hunt parameters Ze; zm; Tme and Tem . Due to reciprocity, Tem ¼ �Tme .
The Tme units [N/A] are equivalent to those of Tem [V/ms�1]. We shall
show later that TðxÞ is ‘‘all-pole” and has (at least approximately)
the same poles as zm. Because it is ‘‘all-pole”, the phase of T is not
restricted to �p. The only constraint on TðxÞ is that it is causal,
and of course, passive.

The three parameters ZeðxÞ; zmðxÞ and TðxÞ are henceforth
referred to as the Hunt parameters, and their complex, frequency-
dependent values fully characterize the transducer — i.e., we say
they form an absolute calibration of the driver. It follows that pre-
cise knowledge of these three impedance properties facilitates the
measurement of arbitrary load impedances and transmitted
energy. The purpose of this research then, is to find an effective
way to easily and inexpensively estimate the Hunt parameters in
the clinical environment (i.e., without requiring direct measure-
ments of the mechanical variables F or v). The proposed method
is to accomplish this by analyzing changes in the bone driver elec-
trical input impedance Zin with the driver mechanically loaded by
known impedances. Subject to a mechanical load impedance ZL,
based on Eq. (1), the electrical input impedance is

Zin �
E
I
¼ Ze þ

T2

zm þ ZL
: ð3Þ

This calibration method is an extension of the procedure of Allen
(1986) for an electroacoustic transducer, which assumed that the
effective load of each calibration impedance differed from its phys-
ical load, and thus used a least-squares solution to calculate the dri-
ver Thevenin properties from an over-determined system of
equations.

2.2. Application of the Hunt model

Given estimates ẐeðxÞ; ẑmðxÞ and T̂ðxÞ, any mechanical load
impedance ZL may be determined from the corresponding mea-
sured electrical input impedance Zin:

ZL ¼
T̂2

Zin � Ẑe

� ẑm: ð4Þ

From Eq. (1), the applied mastoid velocity and force are then

v ¼ ẐeI � E

T̂
; ð5Þ

and

F ¼ �vZL ¼
E� ẐeI

T̂
ZL: ð6Þ

In the clinic, ZL is the mechanical driving-point impedance of the
mastoid bone in series with the dermal cover (skin). Thus the power
transferred to the mastoid P ¼ Fv may be directly estimated from
electrical measurements once the Hunt parameters are known.

3. Materials and methods

3.1. Measurement setup

The electrical input impedance to a Radio Ear B71 bone vibrator
was measured with the driver loaded by four mass loads, having a
mass of 14.541, 35.055, 57.431, and 99.241 g. In electrical terms,
masses behave as an inductive load, e.g., ZLjA ¼ jxmA, where
A ðB;C; . . .Þ designates one particular mass load condition. The
bone driver was oriented face-up so that each mass could be af-
fixed to the diaphragm surface with double-stick tape. The tape
layer was thin and light enough to have negligible effect on the
measured impedance, while ensuring tight coupling between the
movements of the diaphragm and mass; this was necessary to
avoid significant nonlinear distortion. Such distortion was also a
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concern due to coupling from the driver’s backside if placed on a
rigid surface. Thus the driver was situated on shallow egg crate
foam of 3/800 thickness. This sufficiently eliminated these artifacts,
and further tests, with additional foam, showed no differences in
response due to the increased mechanical isolation of the B71.

Voltage signal input/output was performed using an Indigo
sound card from Echo Audio. The stimulus waveform was a 24
bit, 2048 point frequency-swept chirp, with a sampling rate of
48 kHz. This yielded a period of 2048/48 ms, corresponding to an
FFT frequency resolution of 23.4375 Hz. The signal-to-noise ratio
was improved by looping the chirp and averaging at least 500 con-
secutive buffers, for a total measurement time for each mass of less
than 25 s. The 1 V chirp signal was output from the Indigo card to
the combined load of the bone driver and a known reference resis-
tor of 99.709 X: this choice of voltage and resistance ensured that
harmonic distortion of the bone driver was kept at least 50 dB be-
low the fundamental for frequencies between 500 Hz and 8 kHz.
The reference resistor was connected between the driver’s negative
terminal and the sound card ground. From measurements of the
output stimulus as well as the voltage response across the refer-
ence resistor, the input impedance looking into the driver’s electri-
cal terminals was accurately measured (e.g., 10�4 relative error) as
a function of frequency.
4040
Mass−Loaded Input Electrical Impedance

Unloaded
3.2. Laser measurements

In order to verify the Hunt parameter estimations found using
the new proposed technique, a laser system was used to directly
measure the velocity response of the bone driver loaded by masses
of 14.541 and 41.810 g. The bone driver was positioned face-up on
a small amount of cotton on a translation stage, which contained
mechanisms to provide isolation from tabletop vibrations. The
translation stage was used to position the center of the driver dia-
phragm surface directly below the laser. Preliminary testing (not
shown here) revealed that the laser measurements were not ad-
versely affected by nonlinear distortion or slight variations in the
positioning of the driver under the laser.
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3.3. Bone driver demagnetization

After all other measurements were completed, the bone driver
electrical input impedance Zin was measured in an unloaded condi-
tion. The driver was then demagnetized and the input impedance
Zinjdemag � Zd was measured, again in an unloaded state. In this
demagnetized condition, T effectively drops by several orders of
magnitude ðTðxÞ � 0Þ.
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Fig. 2. Magnitude and phase of the bone driver input impedance Zin for the four
mass measurements. Each line represents one of the mass loading conditions. The
lightest dashed line is for the unloaded driver, and then as the load mass increases,
the resonances shift to lower frequencies.
3.4. Hunt parameter estimation methods

Although four mass-loaded input impedances were measured,
only three were needed to estimate the three Hunt parameters.
This three-mass approach — henceforth designated 3M — is the
most generic method for performing an absolute calibration of
the bone driver, requiring only simple electrical impedance mea-
surements, easily implemented in a clinical setting. However, for
research purposes it is helpful to compare with a calibration de-
rived from mechanical measurements. Using the laser measure-
ments of the driver velocity response, only two mass-loaded
measurements were necessary to determine the transduction coef-
ficient eT and mechanical impedance ~zm; this approach is desig-
nated 2ML (2-Mass with Laser). The full details of these Hunt
parameter derivations, given the constituent Zin measurements,
are presented in Appendix A.
4. Results

4.1. Input impedance of mass measurements

The four mass-loaded driving-point electrical input impedance
curves are shown in Fig. 2 as magnitude jZinj and phase \Zin. These
curves exhibit mechanical resonances that decrease in frequency
as the loading mass increases. These resonances consist of a pole
(peak in the response) followed at a slightly higher frequency by
a zero (valley in the response). The unloaded driver has the highest
resonance frequency, with the pole and zero at 1125 and 1195 Hz,
respectively. In order from smallest mass to largest mass, the four
mass-loaded measurements have pole frequencies of 727, 633, 586
and 563 Hz; the accompanying zero frequencies are 773, 680, 633
and 609 Hz. (Recall that each of these values is limited in accuracy
by the 23.4375 Hz FFT frequency resolution.) The second resonance
of the four measurements is around 2.75–3 kHz. The DC resistance
of the driver coil was estimated as 3.02 X.
4.2. Calibration using three mass loads (3M)

Although four different masses were tested, only three are
required to calculate the three Hunt parameters using the 3M
method. This yields four unique three-mass combinations, each
producing a set of estimated Hunt parameters. All four sets of Hunt
parameters are plotted in Figs. 3–5.

The estimated electrical impedance Ẑe in Fig. 3 displays two res-
onances, with poles at 516 and 2789 Hz and zeros at 563 and
3094 Hz. It is worth noting that the resonances in the electrical in-
put impedance of the mass-loaded driver shift significantly as a
function of the load (see Fig. 2), but when these various input
impedances are combined as necessary to calculate the estimate
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Fig. 4. Magnitude and phase of the Hunt transduction coefficient. Each solid line
represents one of four different T̂ estimates calculated with the 3M method. The
dashed black line is the 2ML result eT , from laser measurements of the bone driver
velocity.
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Fig. 5. Magnitude and phase of the Hunt mechanical impedance ẑm. Each solid line
represents one of four different ẑm estimates calculated with the 3M method. The
dashed black line is the 2ML result ~zm , from laser measurements of the bone driver
velocity.
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Fig. 3. Magnitude and phase of the Hunt electrical impedance Ẑe , calculated using
the 3M method. Each line here represents one of four different combinations of
three of the four mass measurements in Fig. 2.
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of Ẑe, the resulting curves are nearly identical, regardless of which
specific input impedances were chosen. The fact that they are not
exactly the same reflects measurement errors. At low frequencies,
Ẑe approaches a constant resistance of about 3.02 X. The high-fre-
quency behavior is less than a pure inductive rise, as may be seen
in the phase, which peaks at 1.09 rad, as opposed to a full
p=2 � 1:57 rad, as would be expected for a pure inductor. These re-
sults are nearly identical to those found by Cortés (2002), who
measured the B71 Hunt parameters using a combination of electri-
cal and mechanical measurements, and found a first resonance in
Ze just above 500 Hz and a second resonance slightly below 3 kHz.

The Hunt parameters in Figs. 3–5 all exhibit disturbances at 422
and 445 Hz. This is due to noise in the root Zin measurements at
those two frequency points.

4.3. Calibration using laser measurements (2ML)

Using two mass loads along with the laser system’s velocity
measurements (denoted 2ML), the transduction coefficient eT and
mechanical impedance ~zm were measured. A tilde is used here to
differentiate the laser-measured results from the 3M estimates,
which are marked with an over-hat ð̂ Þ. The transduction coefficienteT is plotted in Fig. 4 along with the 3M estimate T̂. Likewise, the
mechanical impedance ~zm is shown in Fig. 5 alongside the 3M esti-
mate ẑm.

The estimated transduction coefficients T̂ are in general agree-
ment with each other from 300 to 1500 Hz, and match the laser-
measured eT . There are two noticeable peaks, matching the pole fre-
quencies of Ẑe. These results agree both qualitatively and quantita-
tively with the data of Cortés (2002) and Haughton (1982). For
example, they found T̂ð1 kHzÞ magnitudes of approximately 8
and 10 N/A, respectively, comparable to values of 8–10 N/A found
here.
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4.4. Input impedance of demagnetized measurement

Fig. 6 shows the input impedance to the driver before and after
demagnetization, which almost completely removes the mechani-
cal resonances. With some manual processing, the very small
residual resonances were eliminated from the demagnetized input
impedance, as shown in Fig. 7. This smoothed, resonance-free ver-
sion of the demagnetized input impedance measurement is desig-
nated Zd.

4.5. Model of Zd from demagnetized measurements

The demagnetized electrical impedance Zd is validated by com-
parison with a model proposed by Vanderkooy (1989). This model
accounts for the effect of eddy currents in the driver magnet, which
reduce the inductive impedance at the expense of loss at high fre-
quencies due to magnetic flux diffusion, leading to a

ffiffiffiffiffiffi
jx

p
behavior.

As shown by Warren and LoPresti (2006), the Bessel function ratio
in Vanderkooy’s model can be expanded as a diffusion ladder net-
work, such that the electrical impedance can be represented by the
circuit shown in Fig. 8. This model contains four parameters: the
DC resistance Ro, an inductance Lo, the resistance factor R, and
shunt inductance factor L. The ladder network parameters R and
L are functions of physical properties of the transducer. From War-
ren and LoPresti (2006) and Vanderkooy (1989),

R ¼ 4pn2l
r

; ð7Þ

L ¼ lln2pr2
o ; ð8Þ

where n is the number of coil windings, l is the coil length, r is the
conductivity of the pole structure, l is the permeability of the pole
structure, and ro is the coil radius.
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Fig. 6. Magnitude and phase of the input impedance Zin for an unloaded bone driver
before and after demagnetization. The residual resonances at 1.25 and 4.06 kHz in
the demagnetized data indicate that the demagnetization does not perfectly
eliminate all mechanical coupling.
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2RRo 4R
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Fig. 8. Circuit diagram of the demagnetized electrical impedance model, defined by
the DC resistance Ro , an inductance Lo , and the ladder network resistance factor R
and shunt inductance factor L.
Although the ladder network theoretically continues forever,
only five terms were needed to give the results shown in Fig. 7.
The effect of using more terms is negligible for the frequency range
of interest (Warren and LoPresti, 2006). The DC resistance Ro was
read directly from Zd. The remaining three model parameters were
found by minimizing the RMS error between the model and Zd. The
final parameter values were Ro ¼ 3:297 X; Lo ¼ 2:197 mH;R ¼
44:53 X, and L ¼ 5:024 mH to yield the curve shown in Fig. 7.
The model fits very well, with the exception of some minor phase
deviations from 1 to 5 kHz.
5. Discussion

5.1. Comparison of T and zm with laser measurements

Fig. 4 shows the transduction coefficient eT from the laser mea-
surements, along with the T̂ estimates from the three-mass mea-
surements. The laser curve exhibits similar behavior to the
various derived T̂ estimates, and is in excellent agreement with
the results of both Haughton (1982) and Cortés (2002). This behav-
ior is an all-pole response, which requires that T represents a delay
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line, terminated in an impedance at each end. This interpretation of
TðxÞ as an all-pole transfer function seems to have gone unnoticed
in previous publications. For example, it is a fundamental depar-
ture from Hunt’s assumption that T is akin to a simple second-order
driving-point impedance having the form T ¼ rT þ jxlT þ 1

jxCT

(Hunt, 1954, p. 94). Hunt’s model, and thus his proof of physical
realizability, must be amended accordingly in order to successfully
use it as a basis for calibration.

Looking at Fig. 5, the mechanical impedance behavior is closely
related to the transduction coefficient: it contains the same reso-
nances near 0.5, 2.9 and 5.5 kHz, but they are interspersed with
antiresonances at 1.2 and 4.3 kHz, as required for a driving-point
impedance, having its phase between �p=2. This agrees with the
work of other authors (Haughton, 1982; Cortés, 2002). The 3M data
is similar, although the four different 3M curves begin to diverge
above 800 Hz. Only one of the four curves (the one from the three
lightest masses) completely follows the 1.2 kHz antiresonance. The
phase data in Fig. 5 reveals a second issue: the phase of a driving-
point impedance must remain within �p=2 in order to ensure cau-
sality, yet the 3M data clearly does not stay within these bounds
due to measurement noise skewing the phase unwrapping. How-
ever, even if this phase unwrapping issue is temporarily ignored,
the phase values below 0.3 kHz approach �p=2� 2p. They should
instead approach p=2, indicative of a mass-dominated system.

In order to avoid direct mechanical measurements, the 3M cal-
ibration method uses the driver’s electrical terminals as a ‘‘win-
dow” into the Hunt parameters. It is therefore reasonable to
suspect that the mechanical impedance data will be of generally
lower quality than the electrical impedance and transduction coef-
ficient, because the calibration must ‘‘look through” the transduc-
tion coefficient to observe the mechanical impedance. From Fig. 4,
the transduction coefficient magnitude is small below about
300 Hz, limiting the frequencies at which the electrical input
impedance measurements are sensitive to changes in the load
(Fig. 2). When these electrical input impedances are then used to
calculate the Hunt parameters, the result is a diminished signal-
to-noise ratio of the estimated mechanical impedance. The vari-
ability seen in the mechanical impedance estimates (Fig. 5) must
be resolved before this calibration method can be used to produce
accurate mastoid impedance measurements.

5.2. Refined bone driver model

Inspired by the observed resonance/antiresonance structures of
zm and T, an extended transducer model is proposed in Fig. 9.
Beginning at the far left, the demagnetized impedance circuit of
Fig. 8 is represented with a box labeled ‘‘Zd”. Following Cortés
(2002), a voltage source and force source are used to signify the
transfer of energy between the electrical and mechanical domains.
These sources have opposite polarity due to anti-reciprocity, and
they are proportional to Bl, where B is the magnetic field strength
and l is the length of wire in the voice coil.

The electrical stimulus results in a force source Fs ¼ BlI at the
transducer’s voice coil, with a resulting source velocity v s. The
physical connections between the voice coil and diaphragm are
I
Zd

Es Blvs FE s BlI

Fig. 9. Refined bone driver model, incorporating a transmission line delay element in the
would explain the resonant structures at 0.5 kHz in both T and zm .
represented by a spring (series capacitance C) and a mass (shunt
inductance m). This then feeds a transmission line with character-
istic impedance Zo, the output of which is the force F and velocity v,
where the load impedance ZL is applied.

For a setup such as this, involving a delay line terminated by var-
ious impedances, the relationships between the line’s characteristic
impedance, its delay s, and the termination impedances will deter-
mine the frequencies of resonance. Furthermore, this type of trans-
mission line setup is in agreement with the all-pole nature of T,
and with the zm behavior described in the previous section.

From Eq. (1), the bone driver mechanical driving-point imped-
ance is defined as the ratio of the output force and velocity when
the input current is zero:

zm ¼
F
v

����
I¼0
: ð9Þ

Inspection of Fig. 9 reveals that setting the current to zero effectively
open circuits the force source Fs, removing the influence of the capac-
itor from the circuit. This will cause the circuit to be dominated by the
mass at low frequencies, as viewed from the mechanical terminals at
the far right. This mass-dominated behavior is evident in Fig. 5, as in
the results of Haughton (1982) and Cortés (2002).

5.3. Explanation of Ze resonances

At first glance, the demagnetized electrical impedance mea-
surement Zd seems to contradict the Ẑe results of the three-mass
calibration. From Eq. (1), the electrical impedance is given by

Ẑe �
E
I

����
v¼0

: ð10Þ

Similarly, demagnetizing the bone driver makes T negligibly small,
such that the electrical energy is not transduced into mechanical
energy. This makes v ¼ 0, so Eq. (3) gives a demagnetized electrical
impedance of

Zd ¼
E
I

����
v¼0

: ð11Þ

Based on Hunt’s model, it then follows that Ẑe must equal Zd, but
comparing Figs. 3 and 7 shows that this is clearly not the case.

The refined bone driver model accounts for these observed dif-
ferences between Ẑe and Zd. In Fig. 9, transduction from the electri-
cal domain results in a source velocity v sðxÞ at the voice coil that is
distinct from the transducer output velocity vðxÞ at the diaphragm.
Hunt’s model (and thus Eq. (10)) only concerns the output velocity
v, but the logic behind the demagnetized measurement (Eq. (11))
technically applies to v s, not v. Thus Eq. (11) should be written

Zd ¼
E
I

����
vs¼0

: ð12Þ

Under this condition of vs ¼ 0, the demagnetized measurement of
Zd will in fact be free from mechanical resonances, as seen in
Fig. 7. Likewise, analysis of the circuit model in Fig. 9 reveals that
even if the output velocity is zero ðv ¼ 0Þ, measurements of the
τ

C v
m F

Zo

ZL

vs

mechanical domain, having delay s and characteristic impedance Zo . This delay ðsÞ



2 ‘‘In theory there is no difference between theory and practice. In practice there is.”
— Yogi Berra

222 R. Weece, J. Allen / Hearing Research 263 (2010) 216–223
electrical input impedance (as defined by Hunt) will still be influ-
enced by the mechanical parameters m; C, and Zo, resulting in the
resonances seen in Fig. 3. Although Hunt’s approach of modeling
the transducer as a two-port network is technically correct, his
notation is misleading because the ‘‘electrical impedance” Ze is
not purely electrical, as it includes mechanical elements C and m,
as well as the open-circuited transmission line.

5.4. Summary

Beginning with a two-port transducer model from Hunt (1954), a
novel calibration method has been proposed for determining the
electrical driving-point impedance ZeðxÞ, mechanical driving-point
impedance zmðxÞ, and transduction coefficient TðxÞ for the Radio
Ear B71 bone vibrator, based on measurements of the electrical input
impedance ZinðxÞwith the driver loaded by three known mass loads.
The transduction coefficient estimate T̂ from this 3M method has an
all-pole response (Fig. 4), in good agreement with the mechanical
measurements of Haughton (1982) and Cortés (2002), and the eT
found using our direct laser measurements of the transducer output
velocity (‘‘2ML”). The mechanical impedance estimate ẑm should
have alternating poles and zeros, as shown by the 2ML measurement
~zm, but instead deviates from this form above the first resonance fre-
quency (Fig. 5). This reveals a limitation of the 3M method — the dri-
ver’s mechanical impedance may be estimated from the driver’s
electrical terminals, only limited by noise or uncertainties in the
electrical impedance and transduction coefficient.

The 3M method yields an electrical impedance estimate Ẑe that
contains mechanical resonances (Fig. 3). At first glance, this seems
to contradict Hunt’s notion of an electrical impedance. The demag-
netized measurement of Zd further suggests that the electrical
impedance should not contain resonances (Fig. 7). The apparent
conflict between the results of Figs. 3 and 7 is due to Hunt’s model
not making a distinction between the voice coil velocity vs and the
transducer output velocity v. The transducer model proposed in
Fig. 9 resolves this apparent discrepancy between Ẑe and Zd, and
captures the delay line structure of T.

The promising aspect of the 3M absolute calibration approach,
as opposed to an artificial mastoid calibration, is that the absolute
calibration only requires assumptions about the calibration loads,
whereas the artificial mastoid calibration requires assumptions
about the (unknown) human mastoid load — namely, that it has
the same impedance properties as the artificial mastoid. In order
for an absolute calibration method to be clinically viable, it must
not rely on flawed assumptions, or measurements that require spe-
cialized equipment. Although the ẑm estimates of the 3M method
indicate the need for additional refinement, the Ẑe and T̂ results
are in reasonable agreement with the results from complex
mechanical measurements (the 2ML laser measurements and the
equipment of Haughton and Cortés), yet only require simple elec-
trical input impedance measurements that can be performed in a
matter of minutes.
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Appendix A. Derivation of the Hunt parameters

A.1. Electrical input impedance

When the bone driver diaphragm is loaded with a mechanical
load impedance ZL, the force and velocity across the load are re-
lated by
F ¼ �vZL: ð13Þ

The minus sign is due to the velocity being defined as into the port,
as shown in Fig. 1. Inserting Eq. (13) into Eq. (1) and using the rec-
iprocity relation Eq. (2) yields

E
�vZL

� �
¼

Ze �T
T zm

� �
I
v

� �
: ð14Þ

From Eq. (14), the bone driver’s electrical input impedance Zin is

Zin �
E
I
¼ Ze þ

T2

zm þ ZL
: ð15Þ

An analysis of Eq. (15) reveals that if the transducer were loaded
with an infinite load impedance (ZL !1, that is, blocking the dia-
phragm motion), then the T2=ðzm þ ZLÞ term would become negligi-
bly small and the electrical input impedance would equal the
transducer electrical impedance ðZin ! ZeÞ. In theory this provides
a straightforward method for determining the electrical imped-
ance.2 In practice it seems impossible to fully block the diaphragm
motion — especially in a non-destructive manner — and thus the in-
put impedance will always contain some residual mechanical reso-
nance(s). Instead of using a blocked-motion measurement
condition, a system of equations for Zin under three different loading
conditions, A—C, is (in theory) equivalent:

ZinjA ¼ Ẑe þ
T̂2

ẑm þ ZLjA

ZinjB ¼ Ẑe þ
T̂2

ẑm þ ZLjB

ZinjC ¼ Ẑe þ
T̂2

ẑm þ ZLjC
:

ð16Þ

Here, the over-hat ð̂ Þ is used to indicate that Ẑe; T̂2 and ẑm are to be
estimated from experimental measurements.

A.2. Solving Eq. (16) for the Hunt parameters

The procedure for solving Eq. (16) begins by taking the differ-
ence of two of the measurements, eliminating Ẑe from the
equation:

ZinjC � ZinjA ¼
T̂2

ẑm þ ZLjC
� T̂2

ẑm þ ZLjA
: ð17Þ

Then taking the ratio of two such differences eliminates T̂ , leaving
ẑm the remaining unknown:

ẑm þ ZLjB

ẑm þ ZLjA

� �
¼ ZinjA � ZinjC

ZinjB � ZinjC

� �
ZLjC � ZLjB

ZLjC � ZLjA

� �
: ð18Þ

The term in parentheses on the left side of this equation is a Möbius
transformation of the unknown mechanical impedance ẑmðxÞ (Boas,
1987), and in brackets on the right side are the (known) ratio of in-
put impedance differences and the (known) ratio of load impedance
differences. After solving Eq. (18) for ẑm, Eq. (17) may be solved for
T̂2ðxÞ and then Eq. (16) for Ẑe.

A.3. Case of known velocity

The laser setup described in Section 3.2 was used to measure
the velocity response of the bone driver subject to two different
mass loads. From Eq. (14), the two mass loads yield the system
of equations
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� vAZLjA ¼ TIA þ zmvA

� vBZLjB ¼ TIB þ zmvB;
ð19Þ

where IA and vA represent the current and velocity in the ZLjA load-
ing condition. Simple manipulation of Eq. (19) produces an expres-
sion for eT based on the measured velocities, currents, and load
impedances:

eT ¼ vAvB ZLjA � ZLjB
� 	

vAIB � vBIA
: ð20Þ

A tilde is used to differentiate eT from the derived estimates T̂ or the
theoretical value T. Once eT is known, ~zm is found using either one of
Eq. (19).
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